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ASYMPTOTIC PROPERTIES OF THE METHOD OF EMPIRICAL MEAN FOR
STATIONARY RANDOM PROCESSES AND HOMOGENEOUS RANDOM FIELDS

The article considers the quality of empirical estimates of unknown parameters of stationary
random processes and homogeneous random fields for which the conditions of ergodicity or strong
mixing are satisfied. A series of statements on consistency of estimates, asymptotic distribution and
large deviations for estimations of unknown parameter obtained by the method of empirical means
for independent or weakly dependent observations was formulated.
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T'onon060s [1.0., Koromuak O.1O., Cynapesa O.B., Sfipues B.II.
epoicasnuu ynisepcumem menexkomynikayiu, Kuie

ACUMIITOTHYHI BJIACTUBOCTI METOAY EMINIPUYHUX CEPE/IHIX JIJISA
CTAHIOHAPHUX BUITAIKOBHUX IMTPOLECIB TA OJHOPITHUX BUITAJKOBUX
IHOJIIB

OOnum 3 nioxoois, WO BUKOPUCMOBYEMbCA 6 CUCIMEMHOMY aHANi3l Npu  NPUtHAMMI
ONMUMANbHUX DIUEHb 3d YMO8 PU3UKY MA HEGU3HAYEHOCMI, € CMOXACMUYHe NPOSPAMYBAHHS, AKe
00380JI51€ 8PAX08Y8aAMU UMOBIPHICHULL Xapakmep 00CIIOHCYBAHUX NPOYECIE.

Ilpu po3eé’sazanni 3a0au CMOXACMUYHO20 NPOSCPAMYBAHHS He 3A8HCOU MONCIUBO 3ZHAUMU
MOYHULL eKCMpeMyM MAmemMamuyHo20 CHOOIBAHHS OesIKUX BUNAOKOBUX (DYHKYIU, wo pobums
AKMYANbHUM MemoO eMRIPUYHUX CEPeOHiX, AKULL € OOHUM 3 ni0X00i8, Wo 003808€ PO38 a3amu
8KazaHy npooiemy i noifgeae 6 3aMiHI OYIHOYHOI (YHKYil il eMnipuuHor OyiHKOwW, 01 AKOI
po38’a3yemubcsi HaOIudcena onmumizayiuna 3adava. Ilpu yvomy ymosu 36ixcHocmi iCMOmMHO
sanexcamv 8i0 OYIHOUHOI (QVHKYIL, UMOGIDHICHUX B1ACMUBOCMEN CNOCMEPeNHCeHb BUNAOKOBUX
00 °’ekmig, MempuKu npocmopis, 0asi AKUX O0CAIOHCYEMBCS 30IHCHICMb, ANPIOPHUX 0OMedCeHb Ha
HegiooMi napamempu mowo. B mepminonozcii meopii onmumanbHux piwienb yi NUMAHHA MICHO
Nno8’s13aHi 3 ACUMNMOMUYHUMU  GIACMUBOCMAMU  OYIHOK  HeGIOOMUX  napamempig:
KOH3UCMEHMHICMIO, ACUMIIMOMUYHUM PO3NOOLIOM, WEUOKICMIO 30IHCHOCMI OYIHOK MOWO.

Yumano 3a0au mamemamuyHoi cmamucmuku (OYiHIO8AHHA HeBIOOMO20 napamempa 3d
KpUMepisamMu HAlMeHWOo20 K8AOpamuyHo20 moujo) Moxcyms 6ymu cqopmynb08aHi K CneyidanbHi
3a0aui  CMOXACMUYHOZO NPOSPAMYBAHHS 31  CHeYUpiUHUMU OOMENCeHHAMU HA HeBIOOMUlL
napamemp, niOKpeciodyu miCHULl 368 30K MIdC CMOXACMUYHUM NPOSPAMYBAHHAM MA Memooamu
meopii OYiHIOBAHHAL.

YV cmammi pozensioacmoca aKicms eMnipudHoi OYiHKU HegioOMUX Napamempie cmayioHapHux
BUNAOKOBUX NpoOYeci¢ ma OOHOPIOHUX BUNAOKOBUX NONIG, Ol SAKUX SUKOHYIOMbCSA YMOBU
epeoouynocmi  abo cmpoco  nepemiwyganus. Chopmynvosanuti  psod  meepodceHb  npo
KOH3UCMEHMHICMb, ACUMNMOMUYHUL PO3N00LL MA 6eluKi BIOXUNEeHHS OYIHOK Heg8i0oM0o20
napamempa, OmpuUMaHux MemooomM eMHipUYHUX CepeOHix OJisl He3ANeHCHUX MA CIAOKO 3ANeHCHUX
cnocmepedicetp.

Knrwowuosi  cnoea: memoOd  emnipuynux — cepeomuix,  ACUMNIMOMUYHI  GLACUBOCHII,
KOH3UCMEHMHICHb, OYIHKA, BEUKT 8IOXUNECHHS, OYIHOUHA QYHKYIL.
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I'onosnobos JI.A., Koromuak A.1O., Cynapesa O.B., Sfipues B.I1.
T'ocyoapcmeennuiii ynusepcumem menekommyHuxayuii, Kuee

ACUMIOTOTUYECKHUE CBOMCTBA METOJA YMIIUPUYECKHUX CPEJHUX JJIS
CTALIMOHAPHBIX CJIYYAUHBIX TPOLIECCOB U OJHOPOJHbIX CJOYYAMHBIX
MOJIEN

B cmamve paccmampusaemcs Kawecmeo SMHUPUYECKUX OYEHOK HeU38eCMHbIX NaApaMempos
CMAYUOHAPHLIX — CIYYAUHBIX NPOYECco8 U OOHOPOOHLIX CAYYAUHBLIX Noaell, 011 KOMOpblX
BLINOJIHAIOMCA YCA0BUSL IPOOUHHOCIU UIU CUTbHO20 nepemewusanus. Cghopmyruposana cepusi
VMBEPACOCHUIL O HENPOMUBOPEUUBOCTIU OYEHOK, ACUMNIMOMUYECKOM pacnpedeieHuu U OOoabuux
VKIOHEHUSIX OJisl OYEHOK HeUu38eCmHO20 Napamempa, nouLy4eHHblX Memooom dIMNUPULECKUX CPEOHUX
O/l HE3ABUCUMBIX UL CIADO0 3A6UCUMDBLX HAOTI0OEHU.

Kniouesvle cnosa: memoO sdMRUpU4ecKux —CpeoOHux, acUMNMOMuYecKue Ceoucmsa,
COCMOAMENbHOCHb, OYEHKA, 001bulle OMKIIOHEHUs], OYEHOUHAsL DYHKYUSL.

1. Introduction

In article will be considered the next problems:

1. The method of empirical means for discrete and continuous models with dependent
observations.

2. The method of empirical means applied to the non-stationary models.

3. The method of empirical means under the restrictions of unknown parameters, described in
the form of equalities and inequalities.

4. The method of empirical means for the models, in which the random functions depend on
several variables or random fields.

5. The problems of the large deviations for the method of the empirical means.

The general problem of stochastic programming is formulated in [7]. The method of empirical
mean is one of the most effective methods of stochastic approximation. The basis of this method is
the ideas of the Theory of Estimation, developed by Le Cam [8], Pfanzangl [9] and others. Different
aspects of the convergence of this method are considered in [10] and [11].

2. Main Part

Let (Y L(Y )) be some metric space, where £(Y) is the minimal ¢ —algebra on Y, and
denote by |||| the norm in Y .

Let {&,ie N} be independent identically distributed observations of a random variable
defined on a probability space (Q,S,P) with values in (Y ,£(Y )) , and let £ be a random variable

with the same distribution and taking values in the same metric space. We assume that / is a closed
subsetin R',/>1 and f:IxY — R is a nonnegative function satisfying the following conditions:

1) f(wz),uel,is continuous forall ze Y;
2) foranyue [, the mapping f(u,z),ze Y, is £(Y)—measurable.

The problem consists in finding the minimum point of the function
F(u) :E(f(u,f;)), ue !,

and its minimal value.
This problem is approximated by the following one: find the minimum points of the function

F(n)=13 7 (0.8),

and its minimal value.
We give some examples of regression models, which are widely known to specialists in the
field of theoretical and applied statistics.
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Here ¢,i=1,.,n are independent or stationary dependent random variables,

X, ={xﬂ,i =1, p},i =1,...,n are independent identically distributed random vectors, independent of

E,i=1,..,n.

The vector o’ = (0{10 oo 0{2) is unknown and would be estimated.

2.y, =g(x(i),0°)+¢,x(i)e RP , where the p -dimensional vector x(i) and & are
mutually independent, and each of the sequences {x(i)} and {£},i=1,..,n is the sequence of

independent or stationary random vectors or variables.

Some cost functions characterizing the accuracy of the estimate:
2

1 n P
1 Fn(a)j DI VR YRR 2 I
i=1 j=1
1 n 2
2 F,l(a)=; Zl[y,—g(X(l),a)] ;
t:
1 n P
3 F;T(a):_ 2 |y1_ 2 xitat|’
ni=1 t=1
1 n .
4 Fn(0‘)=;‘21|J’f—g(x(l)a“)|-
1=

Theorem 2.1. [1] Let the following conditions be satisfied:

1) forany ¢>0, E n|1|ax S (w,&) |<oo,where ||| is a norm in R', 121,
u|<c

2) if P{éeY'}=1, then for all ze Y’ we have f(u,z)—> oo as [|z| = oo

3) there is a unique point u,, at which the function F(u) attains its minimum.

Then, for any n and we ', P(Q')=1, there is at least one vector u, =u, (®)€ I for which
the minimum value of F,(u) is attained and, for any n21, the vector w, can be chosen to be G, -
measurable, where G, =G, NQ" and G, = 0'{ ELi =1,_n} In this case, with probability 1, u, —u,
and F(u,)— F(u,).

Theorem 2.2. [1] Let (Q,U,P) be a probability space, K is a compact subset of some
Banach space with a norm ||'||. Suppose that

{0,(s)=0,(s, )€ KxQ,n>1}
is a family of real functions satisfying the following conditions:
1) forany n,s the function Q, (s,w),we Q is measurable;

2) for fixed n and @ the function Q, (s,®),s € K is continuous;

3) for some element s'e K for each 0<y< ¥,y one has

P{ lim Qn(s,a))=(l)(s,so)}:1,

T — oo
where ®(s,s,) > D(s,,5,),5 # S,
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4) there exist ¥, >0 and a function c(y),y>0, c(y)—>0,y >0, such that for any
element s'e K and any0< y< ¥y one has

0,(5)-0,(s)

P{m sup <c(7/)}=1.

T —oo '
p-sler

Foreach n>1 and we Q define an element s,=s (w)e K by the relation

0,(s,)= min O (s).
se K

If there is more than one point of minimum of the function Q, we will take any point s,. Then
P{||s, s = 0,0, (s,) = D(s4,5,),n —> oo} =1.
Applying the ergodic theorem, it is possible to show that the claim of Theorem 1 holds true,
and in this case the random sequence {cfl, ie N } is ergodic and stationary in the restricted sense.

Theorem 2.3. [1] Let {f(t), te ‘ﬁ} be a random ergodic process stationary in the restricted
sense and defined on the probability space (Q,3, P) with values in R. Let the following conditions
be satisfied:

1) for any ¢>0, E{ max f(u,f(O))}< oo
u|| <c
2)if I is an unbounded set for any zeY’' , and P{f(t)e Y'Vt2 O} =1, then
f(u,z) >eo as ||u|| —>oo;
3) there is a unique element u,e€ I for which the minimal value of the function
F(u)= Ef(u,f(O)) is attained.
Then, for all T >0 and we &', P(Q')=1, there is at least one vector w(T)e I for which the

minimal value of the function

is attained and measurable.
Let u, =argmin F (u), where F (u)=Ef (u,£(0)). Then we have

P{ lim u(T):u}:l, P{ lim FT(uT):F(uO)}:l.

T —oo T — oo
Now we consider the case of a non-stationary model. We will suppose that the criterion
function depends also on the temporal parameter, i.e., it is a function of three variables. For
example, in the discrete time the criterion function has the form

1 n
i=1

As an example, one can take

or
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for the model of the observation
Vi :g(i,u0)+§i,

Such models were considered in [2].

Let’s consider one more model connected with problems of nonparametric estimation. We
assume also that the unknown parameter is an element of some functional space. For example, one
we can consider the problem of the estimation of the unknown function u(¢) € K, where K is the
compact set of functions defined on [0,1], by observations

y, =u(i)+§i,i=1...,n
n

with some criterion function.
Theorem 2.4. [3] Suppose that for an ergodic homogeneous in the wide sense random field

E(1)e Y,te R" the conditions below are fulfilled.:
1) forany ¢>0
E<{ max (f(u,é(O))2 <oo;
| < ¢

2) if S is unbounded then for each ze Y
S (u,z) = e,

ul| = oo
3) there is a unique element u*e 3 for which the minimal value of the function
F(u)=Ef (u,£(0)) is attained.
Then for all T >0 and we Q', P(Q') =1, there is at least one vector u(T)e 3 for which the

minimal value of the function F, (u) and
P{u(T) —u F,(u(T))—> F(u ),T —)oo}:l_
0 0

Let {f(;)z«f (Z, a)),;e 9?’"},m20 be a homogeneous in a strict sense random field on a
complete probabilistic space (,G,P) with values in some metric space (Y B(Y )) Suppose that
realizations of f(;) are continuous on R” with probability 1. We have a continuous nonnegative
function f:JxY — R, where J is a closed subset of R, I>1.

We have the observations {f(?) : ”;” <T },T > (0. The problem is to find minimum points and

the minimal value of the function

F(u)=Ef (u,£(0)).ue J. (1)
We will investigate the problem (1). This problem is approximated by minimization of the
function
[ b(&,g(?))dt
F,(u) =L ued.
lel<7
Denote
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b(t)=b,(t,c)=

[lnf S &)~ Ef inf f (w,£(0)) I Hf S E0)—Ef inf f (u, &(0)))

>

[ nf /(EO0)-Ejnt /(. ao»)
L E(f@E0)-FW)(fE0)-Fw)
b,(t)=b,(t,u)= — — ;
E(f@.g0)-F@))

by(t)=b(t,K, )=
E(W(K,7,£(0) - E¥(K, 7,5(0))(W(K, 7,£(0) - E¥(K, 7,£(0)))

- >

E(W(K.7.60) - E¥(K.7,£0))

where
Y(K,y,z)= sup

uvek: ‘u VH<]/

f(&,z)—f(G,z)H.

The next theorem takes place.
Theorem 2.5. [3]. Let the next conditions be fulfilled:
1) forany ¢>0

{max(f(u £0))) }

2) J is unbounded then for each ze Y

ok

3) the function (1) has a unique minimum point u ;

4) for all c>0ueJ ¢>0,u€E and any compact K c J,y > 0
Llnp) (%1 _
j—m j—2|B,,(r)|dr dp<s,i=13,
0 p 0 T

where

B(0)= [ b(dri=13.

[
Then for all T >0,we Q,P(Q) =1 it exists at least one minimum point ;(T) = &(T, ) of the
function F, (ﬁ) . For any T >0 the function ﬁ(T ,W) can be chosen G'-measurable, where
g':{Ae GZACQV}.
For any minimum point ;(T)
P{&(T) — 0, Fy (u(T)) = F(u0).T - oo} = 1.

Another important property of estimates is their limit distributions. It is important to know
that if the true value is an interior point of the domain of admissible values, or it belongs to the
boundary of this domain. We will not formulate all the conditions under which one can prove the
statement on the limit distribution of the estimate, because these conditions are indeed very
complicated. These conditions are given in a full look in [4].

For example, if we have the observations of the random in area ||;||<T then the normed

variable has a form
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2

AR
and
Fj dt (FT(&(T))—F(LTO)).

Further we consider a case where the restrictions are of the form

J ={u 1g(u) =(gl (1), g, (u)) < O} .
Then the family of vectors

2

nT:er i)

converges weakly to the random vector L which is the solution to the problem

1=~ (=) -
—u®|luy, |lu+gu —min;

2
- \>
Ve'| u, |u <0,

where ¢ is normal random vector.

The following problem consists in obtaining some theorems of the large deviations for a
method of empirical means for the dependent observations. We will give some results. Our purpose
consists in receiving the following estimates

limsup%lnPﬂmin{Ef(x), xe X}-min{F, (x),xe X||> &} <~inf{l(2),ze 4.}
Nn—o00
and

limsup—~In Plx, —x'| 2y~ o)} —infll(2).z € 4,},

n—e N

where 7(x) is the some positive function of some look on which we will stop later, and y is the

some so-called improving function — monotonously not decreasing function,
W :[0,00) =[O0, oo),ly(O) =01, such that it exists p >0, for which at all xe B(x, f,p) we have
F@ 2 £ +ylr—x]). @)

For the formulation of the main results we need a concept of hypermixing which is given in the
monograph [5]. Let us recollect some facts from the functional analysis. For any ye Y the function

f(o,») belongs to the space C(X) of continuous real functions on X . We assume that for all
yeY wehave f(o,y)—Ef(°)e K, where K is some convex compact set from C(X). Therefore
for any nF, (o)—Ef (o) is a random element defined on the probability space (€2, F,P) and with

values in K.
Definition [5]. A random sequence {&,ie N} is ergodic and stationary in the restricted sense

is called a sequence with hypermixing if there exist a number /,€ A" U{0} and non-increasing

functions @, f:{I>1,} —[1,+e) and y:{I>1} —[0,1] which satisfy the next conditions
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}ima(l) =1, limsup/(B(l)—1) <o, }im y()=0

[—e0

and for which

3)

P
bl <,
J=

whenever p22,1>1,1,,...,1, are [-measurably separated functions. Here

1/r
Il ., = [J n(w) rdPJ
Q

S N

70 (P)

and

Q

f[é(w) - f(w)dP}/(w)dP

forall [ >1,, £,ne L'(P) are [-measurably separated. The following statements take place.
Theorem 2.6. [6] At the hypothesis (3) of the hypermixing condition we have

limsup%lnPﬂmin{Ef(x), xe X}-min{F, (x),xe X||2 &} <-inf{l(2),z€ 4}
n—>00

Assume that there exists a function w which meets a condition (2) for Ef(x) in the point x .

Let x, be a point of the minimum of the function F,(x) in the set B(x*,p). If € is sufficiently
small so that the condition for
l//(lx—x*|)S 2e > |x—x*| <p
is fulfilled, then
limsup—In Py (x, —x'|)2 2¢}< —inf{1(2),z € 4,}.

n—e N

Moreover, if v is convex and strictly increasing on [0, p] then

lim suplln Pﬂxn - x*| >y (28)}S —inf{l(2),z€ 4,},

n—e N
4, ={ze K:|z|ze}. K cC(X).

The proof is based on the following statement.

Theorem 2.7. [6] Suppose that {é"i,ie Z} is a stationary in a strict sense ergodic random
sequence satisfying the hypothesis (3) of the hypermixing condition, defined on a probability space
(Q, F,P) with values in a compact convex set K C C(X). Then for any measure Q€ M(X)
there exists

. 1 n
AQ) = ggg;ln[ | exp{z [& (w)(X)Q(dx)}dPJ
Q i=l x
and for any closed A K
limsuplln(P{lZé"i € A}JS —inf{A"(g),g € 4},
n—e N n -

where
AN(g)= SUP{jg(X)Q(dX) -A(Q), Qe M(X )}

is the nonnegative, lower semicontinuous and convex function.

3. Summary

The article was considered by the method of empirical mean, which is one of the most
effective methods for solving stochastic programming problems. It is closely related to the so-called
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M-estimates, which are widely used in the theory of statistical estimation of stochastic processes.
The results of the asymptotic behavior of the estimates obtained by empirical means were
presented.
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