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PARAMETRIC MATHEMATICAL MODEL OF SEISMOACQOUSTIC
MONITORING OF A SINGLE MORTAR EXPLOSION

Abstracts. The article is devoted to constructing a mathematical model of a single mortar explosion
signal for automated seismoacoustic monitoring systems to identify mortar weapons for remote
reconnaissance. Structural analysis and identification of the dynamic parameters of such objects is an
extremely important topic when monitoring them to classify the weapons used for remote reconnaissance. A
new mathematical model for identifying a mortar explosion is proposed, which reflects the most significant
aspects of the monitoring process, which includes both the process itself and the interference and background
noise accompanying this process imposed on a natural research. The article presents a technique for
identifying the main structural parameters, such as the leading natural frequencies and the quality factor of
the structure at these frequencies. The work proposed a new, previously unused method for assessing the
identification of a mortar explosion, within the framework of which an original mathematical model was
proposed that solves these problems.

The proposed model is a nonlinear regression problem. To find an approximate solution to such a
problem, the authors use non-convex optimization methods, for example, to find local minima - Livenberg-
Marquardt gradient methods, and to find a global minimum, the Monte Carlo method using specific sequences
is effective. In some cases, it is possible to search for local extrema in the vicinity of given vectors of values of
all parameters when, for nonlinearly entering parameters, there is only one root closest to the given value of
the corresponding parameter.

As a signal model, a superposition of solutions of a second-order differential equation was chosen,
which describes a superposition of oscillators that entered at different times, having their eigenfrequency and
corresponding amplitudes.

The optimal estimation of the signal parameters consists in determining the vector of free parameters
that minimize the value of the criterion of agreement between the model and the observed data. Such a model
is supported by the fact that it gives good agreement in the case of modeling a linear system of oscillating
objects and, thus, takes into account the oscillating nature of the observed data and its simplicity. Thus, the
presented model displays each type of mortar firing shots into its n-dimensional vector of informative
parameters, making classifying small arms possible. To evaluate the informative parameters of the proposed
model of the automated seismo-acoustic monitoring system, the article solves the problem of nonlinear
regression, considering them as the point of the criterion optimum in the n-dimensional space.

Key words: mathematical model, sesmoacoustic monitoring, Monte Carlo method, nonlinear
regression, vector of informative parameters, Livenberg-Marquardt method, explosion identification.
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IHAPAMETPUYHA MATEMATHYHA MOJEJIb CEUCMOAKYCTHYHOT' O
MOHITOPUHTI'Y OJMHOYHOI'O BUBYXY MIHOMETA

Anomauia. Cmammsa npucesayeHa noOy0osi MamemMamuiHoi Mooeni CUSHALy O0OUHOYHO20 BUOYXY
MiHOMema OJist ABMOMAMUZ08AHUX CUCTEM CEUCMOAKYCMUYHO20 MOHIMOPpUH2Y i0enmuikayii MiHoMemHo2o
030pO€EHHA 01 OUCMAaHYItHOT po36ioku. CmpyKmypHUulli aHanis ma ioeHmu@ixayisis OUHAMIYHUX napamempis
maxux o00'ekmi6 € Ha038UYAUHO BAXNCIUBON) MEMOI0 HpuU iXx MoHimopuney 0as Kiacugixayii 36poi, axa
BUKOPUCMOBYEMbCS OJi51 OUCAHYINIHOL PO36IOKU. 3aNPONOHOBAHO HOBY MAMEMAMUYHY MOOeb i0eHmugikayii
8UOYXY MiHOMema, AKa 8i000padicac HAUOLTLUL CYMMEBT AcneKmu npoyecy MOHIMOPUH2Y, AKUl BKII0YAE AK
cam npoyec, max i nepewrkoou ma oHo8UL WyM, WO CYNPOBOOXCYE Yell npoyec, HAKIA0eHUli Ha NPUpPoOHe
docnidvicennss. Y cmammi npedCcmasieno Memoouxy i0eHmupixayii OCHOBHUX CMPYKIMYPHUX RApamempis,
MaxKux siK nepeoHi GIAcCHi uacmomu ma O0OPOMHICMb KOHCMPYKYIl Ha yux uacmomax. Y pobomi
3aNPONOHOBAHO HOBUL, paHiule He UKOPUCOBYBAHUU MemoO0 oyiHKU ideHmugixkayii eubyxy minomema, 8
PAMKAX K020 3aNPONOHOBAHO OPULTHATLHY MAMEMAMUYHY MOOelb, WO UPIULYE Yi NPOOTIeMU.

3anpononosana modenv € 3adauero HeliHiliHOL peepecii. [ HabauNCeH020 sUpiueHHs makoi 3adayi
agmopu  GUKOPUCTNOBYIOMb HEeBUNYKIL MemoOu Onmumizayii, Hanpuxiao, O01s 3HAXOONCEHHSA NOKATbHUX
MiHiMyMmig - epadienmui memoou Jlisenbepea-Mapkeapoma, a 0 3HAX00XNCEHHS 27100ANbHO20 MIHIMYMY
epexmugnutl memod Moume-Kapno 3 UKOPUCIMAHHAM KOHKPEMHUX ROCTIO08HOCHed. Y Oesikux unaoxax
MONCTUBUTL NOULYK TTOKATLHUX eKCIPEeMYMi8 8 OKOMI 3a0anux 6eKmopie 3Hauens YCix napamempis, Koy 0s
HeNIHIHO 8XIOHUX Napamempie iCHYE auue 00UH KOPiHb, HAUOIUNCUUL 00 3A0AH020 3HAYEeHHS 8ION0BIOHO20
napamempa.

B sikocmi modeni cuenany obpamo cynepno3uyiio poss’sasKie OughepeHyiaivHo2o PIeHAHHA 0py202o
NOPAOKY, KA ONUCYE CYNEPRO3UYTI0 OCYUAMOPIB, WO BBILIULIU 8 PI3HUL YAC, MAOMb GIACHY YACOM) ma
8I0NO0GIOHT aMNAIMYOU.

Onmumanvha oyiHKa napamempie CUsHANLY NOJAAE Y BUSHAYEHH] 86eKMOpPA BLIbHUX NApAMempie, sKi
MIHIMI3YIOMb  3HAYEHHS KPUMEPIo V32000CeHHs Moodeli 3 Oanumu cnocmepedcedns. Taxa mooenw
niOmMeepONCYEMbC MUM (PAKMOM, WO B0HA OAE XOPOULY Y3200HCEHICMb ) GUNAOKY MOOENOBAHHS NIHIUHOL
cucmemu KOIUBATLHUX 00 €KMI6 I, MAaKUM YUHOM, 8PAXOBYE KOMUBATLHUL XAPAKMEDP CHOCMEPEeICYBAHUX
Odanux i ix npocmomy. Takum YuHoM, NPEOCMABIeHA MOOElb GI00OPANCAE KONCEH MUN NOCMPILIE MIHOMEMmie
V CcB0EMY N-BUMIPHOMY 6eKMOPI IHOPMAMUBHUX NAPAMempi8, W0 00380158€ KIACUDIKY8AmMU CMPIIEYbKY
30poro. [{na oyinKu IHGOPMAMUBHUX NApAMEempi8 3anponoHO8AHOI MOOeNi A8MOMAMU308AHOI cucmemu
CelCMOaKyCmu4Ho20 MOHIMOPUHSY 8 CIAmmi po38 'a3aH0 3a0ay)y HeNiHIUHOI pezpecii, po3ensdaiouu ix K
MOYKY ONMUMYMY Kpumepiro 8 N-6UMIPHOM)Y NPOCMOPI.

Kntouosi cnosa: mamemamuuna mooensb, CecCMOAKYCMUHHUL MOHImMoOpune, memoo Monme-Kapno,
HeNiHIlNHa pespecis, ekmop iHpopmamusHux napamempie, memoo Jlieenbepea-Maprsapoma, ioenmugpikayis
8UOYX).

1. Introduction.

Creating monitoring systems for conducting remote surveillance has become a natural
necessity. This paper discusses a method for constructing mathematical models of seismic-acoustic
monitoring to conduct remote surveillance. It presents a mathematical model of seismic-acoustic
monitoring for assessing single signals of mortar explosions to identify the weapon firing the shot.
Seismoacoustic monitoring is different in that it has its specific frequency range. It covers the seismic
and sound range. This article proposes a previously unused method for assessing the identification of
a mortar explosion. Within the framework of this method, an original mathematical model that solves
these problems is proposed.

In modern conditions, it is necessary to create automated monitoring systems for detecting and
identifying sources of explosions to obtain information and make decisions about their nature. To
solve these problems, it is necessary to create mathematical models and algorithms for detecting and
identifying explosions. In the monitoring approach, an object is identified with a point in the
multidimensional space of model free parameters. Thus, the identification process determines a vector
of parameters in the feature space. This paper proposes a mathematical model for identifying the type
of mortar by identifying an explosion when studying seismic recordings of mortar explosions. Object
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identification problems involve decision-making problems. When choosing a mathematical model, it
IS necessary to select the space of informative features in such a way as to reduce the likelihood of
errors of two types. The choice of model is also determined by the possibility of its use in the flow of
signals generated by a series of explosions. The method for constructing a mathematical model is
presented in this work.

It is necessary to build a mathematical model of a mortar explosion, which would reflect the
most significant moments of the monitoring process, including the process itself and the interference
and noise background accompanying this process, imposed on a natural experiment. A priori
knowledge of the interference of a random process will significantly weaken its influence on
obtaining estimates of process parameters, which is perceived as a useful signal. This attenuation is
achieved by optimizing processing procedures and considering priori statistics of the random
interference process.

A new mathematical model for displaying a mortar explosion signal in the seismoacoustic
frequency range and constructive algorithms for its implementation are proposed. The mathematical
properties of the model are studied. Theoretical provisions are confirmed by calculations for
preliminary processing and extraction of the mortar explosion signal from field observation data.

To estimate the informative parameters of the studied explosion signal of the mortar, a
nonlinear regression problem is solved, considering them as the optimum point of the criterion in n-
dimensional space.

2. Mathematical modeling of seismoacustic monitoring.
When estimating model parameters in seismoacoustic monitoring problems and the general
case, we are faced with such a representation of the model of observed seismoacoustic fields y(t, x)

when observations are complicated by additive noise n(t,x) (t - time, and X - spatial coordinates,

the latter, depending on the organization of the observation system, can be one-dimensional, two-
dimensional and three-dimensional, or take one single value). The actual model of the field formation

process M (a,t,x) is determined by the vector a of free parameters of the model, and the model
itself is the researcher’s hypothesis about the modeled process. Moreover, the vector of free

parameters of the model a contains the parameters included in the model, both linearly and
nonlinearly. So the model:

y(t,x) = M (a,t, xX)+n(t, X) 1)

Here, the free parameters of the model to be estimated are the elements of the vector a, n(t, x)

is the additive noise. In general, the dimensions of vectors also need to be determined.
To completely solve a problem means determining the vector of free parameters of model

M (a,t, x) for the selected means of a. The norm of the noise n(t, x) is estimated for the vector a
calculation. If it does not exceed the threshold set by the researcher, then a decision is made about the
adequacy of the hypothetical model M (a,t,x) to the process y(t,x). In the general case, the

dimension of the vector-free parameters of the model must also be determined. In what follows, we
will consider the vector of free parameters a € A, which A is the set of all possible vector values a

To solve problem (1), we can propose a selection method [1], i.e. we are looking for such values
of the parameter vector a that, for the selected scalar product in the Hilbert space, give the minimum

deviation of the model M (a,t,x) from the observed data y(t, x). The Hilbert space is chosen, first
of all, due to the fact that we always consider the noise n(t,x) as a random process for which

statistical characteristics are specified, and it is possible to calculate covariances, which are the scalar
product. So, we come to the need to solve the following problem:
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min [(y(t,x)—M(a,t,x),y—M(a,t,X))] )

Here (n(t, xX), n(t, x)) Is the square of the noise norm at point x, and ¢ is the square of the norm

of the a priori expected discrepancy between the imperfect model and the natural process that is being
modeled. The value ¢ is determined subjectively as the researcher’s attitude to the quality of the
model. This approach has been the subject of many works in the past [2]; it is still relevant in
geophysics today [3].

In (2), we defined the relation to the optimal estimates of the model parameters, firstly, as a
point in the parameter space that minimizes the selected criterion and, secondly, the estimate is
accepted only in the case when the value of the criterion does not exceed a certain threshold chosen
a priori. Otherwise, the model is rejected.

Since the right side of the criterion contains the norm of the noise component, the way of
choosing the scalar product naturally arises. It must be selected so that the interference rate is minimal.
This norm is the dispersion of the random process at the point t.

(n(t,x).n(t,x,)) = E(n(t, x)n(t,x,)) ©)

Here E is the operator for calculating the mathematical expectation of a random process with
zero mathematical expectation at the point t.

To obtain unconditionally optimal estimates of the vector a, it is possible to minimize (3) by
enumerating of a. But, as a rule, other approaches are used, for example, gradient methods or the
Monte Carlo method using special sequences [4]

Mathematical model of the mortar explosion signal.

As a signal model, we choose a superposition of solutions of a second-order differential
equation, which describes a superposition of oscillators that entered at different times, having their
eigenfrequency and corresponding amplitudes.

M (t,2) = i@(t IR [ef,\zm o) SinAy. 4 (F — Mg )]]; I T (3)

Here ) is the vector of free parameters of the model, | is the number of submodels
participating in the superposition, p is the number of the corresponding submodel, and @(¢) is the

Heaviside unit function [5].

The optimal estimation of the signal parameters consists in determining the vector of free
parameters that minimize the value of the criterion of agreement between the model and the observed
data. Such a model is supported by the fact that it gives good agreement in the case of modeling a
linear system of oscillating objects and, thus, takes into account the oscillating nature of the observed
data and its simplicity. We chose a relatively simple case, and as a fitting criterion, the value of the

norm L, (the integral of the squared deviation of the model from the observed data y(t) ) or L, (the
integral of the modulus of the model deviation from the observed data y(t) ). In the first case, the

criterion takes the form F(%):

T+T

F(M)=[[y(®)-MEn] dt, (4)

In the second case, the criterion takes the form F (&):
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T+T

F(3)= [ y(t)-M(t.2)|dt

And the optimal estimate of free parameters A" is a point in the parameter space minimizing

(2):

F(x*):minF(x).

reA

Here y(t) is the analytical approximation of the vector of values of the processed observed
data presented in Fig. 1. Ais the set of possible values of the vector .

. - . : ... OF (A —
To find the minimum of the criterion, we need to calculate partial derivatives % k=0,K

and, equating them to zero, create a system of equations that looks like this:

8F()\’)_T+T ~ oM (t,l) ~ L —
i _![y(t) |\/|(t,x)]—aﬂLk dt=0, k=0,K. (5)

The system of equations is reduced to the following form:

+T +T

[[y(t)-D(M(t,2))]dt= [ [M(t.2)-D(M(t,2))]dt. (6)

T

Here D(M(t,2)) is a vector composed of functions, each of which is the partial derivative of
the model with respect to the corresponding component of the vector A. For model (3), this vector

has the form:
D(M(t,k)):{%m}; p=03;i=0,1. (6)

p+i

Here i is the ordinal number of the submodel in (1). The relevance of the variational approach
in solving geophysical problems can be traced, for example, in [6].

Model (3) represents a nonlinear regression problem. To solve it concerning the parameters
nonlinearly included in the model, it is necessary to find the minimum of criterion (4), which has a
large number of local extrema that are close in the parameter space; you need to get to the global
minimum point in the Monte Carlo method, so as not to reach a local minimum and obtain a
suboptimal solution. Note the convergence in probability of the algorithm for finding the minimum
criterion (for each sensor) using the Monte Carlo method.

The situation is much simpler for parameters linearly included in the model since the functional
(4) (for fixed nonlinear parameters) is strictly concave, and the extremum point is unique.

To find an approximate solution to such a minimization problem, non-convex optimization
methods can be used, for example, to find local minima - gradient methods or Newton's method, and
to find a global minimum, the Monte Carlo method using particular sequences is effective. In some
cases, it is possible to search for local extrema in the vicinity of given vectors of values of all
parameters, when for nonlinearly entering parameters only one root is found, which is closest to the
given value of the corresponding parameter.The search for the minimum is carried out according to
the Levenberg-Marquard algorithm [7,8] for a priori randomly selected point in the space of free
parameters of the model (1).
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3. Analysis of results.

Let's move on to analyzing the quality of the optimal model. Models with sixteen free
parameters are presented. The optimized procedure for estimating the dynamic parameters of a mortar
explosion recording with characteristics in the seismic frequency range is illustrated by processing
field observations obtained when recording mortar explosions at the test site.

The model's quality is evaluated based on the criterion's value at the global minimum point. In
Figure 6, crucial characteristics of the object are depicted, particularly the system's quality factor at
natural frequencies. The figure illustrates the rates of energy dissipation or accumulation at natural
frequencies for the 16-parametric model, considering three natural frequencies. A significant
observation emerges: the quality factor varies notably across different frequencies (reflected in the
time constant of the exponential). The initial point of each curve on the ordinate axis provides an
estimation of the amplitude for each harmonic.

The frequencies and logarithmic decrements of the studied object hold significant physical
meaning. The latter are particularly vital as they offer insights into the system's quality factor, its
capacity to store and preserve energy from external disturbances over time. A high-quality factor (low
decrement) at certain frequencies in the model signifies the object's heightened susceptibility to
external disturbances at those frequencies. For instance, dynamic variations in decrement towards a
decrease indicate the object's vulnerability to weak external influences, potentially leading to its
deterioration. Regrettably, the Monte Carlo method employed in the article only converges to a
solution probabilistically. It necessitates a substantial number of calculation cycles to ensure
confidence in the accuracy of the result, especially challenging when dealing with high-dimensional
models. Or you need to have good a priori ideas about the expected result. The following are the
optimal parameters for the signal.

200

100

T

Fig.1. A fragment of a recording of a mortar explosion signal against background noise (blue
line). A model that approximates this signal, the free parameters of which are obtained by assessing
the optimal parameters of criterion 16 (red line). The abscissa axis represents time in seconds, and
the ordinate axis represents the amplitude of the oscillation speed in relative units.
Transposed vector of amplitudes of natural frequencies:
S" ={1,102 0,638 0,324}

Transposed vector of decrements at natural frequencies:

p' ={0,076 0,068 0,938}

Transposed natural frequency vector:
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o' ={0,291 2,436 15831} I'ny

The discrepancy between the resulting model and the observed data in Fig. 1 is 7% in metric.
L,.

4. Conclusions.

A mathematical model for identifying a mortar explosion is considered, reflecting the most
significant aspects of the monitoring process, including the process itself and the interference and
noise background accompanying this process imposed on the investigation. The model is a nonlinear
regression problem for which nonlinear optimization solution approaches are used.

Mathematical models of automated systems of seismoacoustic monitoring are used to model
fields of mechanical elastic waves [9-14]. This paper presents such a model for identifying mortar
weapons for remote reconnaissance. We can see that the informative parameters of the signal model
characterize the above-described process with a high degree of sufficiency. We can conclude that this
parametric model maps the process into the feature space and characterizes the object that fires the
shots. Thus, the presented model (14) displays each type of mortar firing shots into its n-dimensional
vector of informative parameters, making classifying small arms possible. Thus an effective analysis
method is proposed for estimating the parameters of mortar explosion signals, and non-traditional
model of the natural background against which signals of mortar explosions are recorded is proposed.
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