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HYBRID Al ARCHITECTURE FOR DYNAMIC WORKLOAD SCHEDULING
IN LARGE-SCALE DISTRIBUTED COMPUTING SYSTEMS

Abstract: This research presents a novel hybrid artificial intelligence architecture for optimizing task
scheduling in large-scale distributed computing environments, combining distributed Al Schedulers (AIS) with
a centralized Decision Tree (DT) layer to achieve superior scheduling accuracy and adaptability. Traditional
scheduling approaches struggle with heterogeneous environments, leading to suboptimal resource utilization,
which our two-tiered architecture addresses through cluster-level Al Schedulers that pre-select suitable nodes
based on four key metrics: performance, data transfer rate, operational time, and security level. The neural
network architecture employs two hidden layers with ReLU activation functions, while the Decision Tree layer
uses an enhanced CART algorithm for final node selection, incorporating both primary characteristics and
historical performance data. Experiments conducted across deployment scales from 5 clusters (500 nodes) to
30 clusters (15000 nodes) demonstrate the hybrid approach achieves 99-100% accuracy in node selection,
significantly outperforming the standalone Al Scheduler's 94-96% accuracy, while maintaining consistent
performance and transparent decision-making processes across all scales. This architecture proves
particularly effective for cloud computing environments, 10T deployments, and distributed systems requiring
sophisticated resource allocation, contributing a scalable, accurate, and interpretable scheduling solution that
effectively combines local intelligence with centralized decision-making for broad applicability in domains
requiring dynamic resource allocation in distributed environments.

Keywords: Distributed task scheduling, artificial intelligence, hybrid architecture, decision trees,
neural networks, heterogeneous systems, resource optimization, cloud computing.
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I'IBPUIHA APXITEKTYPA HITYYHOI'O IHTEJEKTY JUIAA IUHAMIYHOI'O
IINTIAHYBAHHS POBOY0OI'O HABAHTAKEHHA Y BEJIMKOMACIHITABHUX
PO3NOAUVIEHUX OBYUCJ/IIOBAJIBHUX CUCTEMAX

Anomauin: ye 00cniodncenHss NPeoCmaesnse Ho8y 2IOPUOHY apXimexmypy wimyuHo2o IHmeaekmy OJis
ONMUMI3aYii NIAHY8AHHA 3A80AHb Y BEIUKOMACUMAOHUX PO3NOOIIEHUX OOUUCTIOBANHUX CEPe00sULYax,
NOEOHYIOUU PO3NOOINEH] NAAHY8aNbHUKY wmyyno2o inmenekmy (AlS) iz yewmpanizosanum pienem Oepesa
piwens (DT) ons docsaenenns nadzguuaiinoi moyHocmi ma a0anmueHoCmi naanysants. Tpaduyitini nioxoou
00 NIAHYBaHHA OOPIOMbCA 3 HEOOHOPIOHUMU CepedoSUAMY, WO NPU3800ums 00 HEONMUMAILHO2O
BUKOPUCTHANHA pecypcie, AKI Hauid 080pieHesa apXimexmypa GUpIulye 3a 00NOMO20H0 NIAAHY8ANbHUKIE
WMYyYHOo20 IHMeNleKmy Ha PieHI Kiacmepa, sKi NonepeoHbo GUOUpaioms 8i0N0GIOHI 8Y31U HA OCHOBI YOMUPbOX
KIH0U0BUX NOKA3HUKIB. NPOOYKMUBHOCMI, WEUOKOCMI nepedayi OaHUX, ONepamuéHo2o 4acy ma Oe3nexu.
piseHb. Apximexkmypa HelpoHHOI Mepedici BUKOPUCMOBYE 084 NPUXosani pieHi 3 ynxyiamu akmueayii ReLU,
mooi sk pigens 0epesa piuteHb sukopucmosye posutuperutl areopumm CART onst ocmamounozco eubopy 8y3ia,
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Wo BKIIOYAE AK OCHOBHI XAPAKMEPUCMUKU, MAK i icmopuyni 0aui npo npodykmusnicme. Excnepumenmu,
npogederi Ha macwmabax poseopmanns 6i0 5 kaacmepie (500 eysnig) 0o 30 xnacmepis (15000 sysnis),
demMoHcmpyroms, wo 2iopudnuti nioxio oocseae 99-100% mounocmi aubopy 8y31i8, 3HAYHO nepesepuLyoyU
mounicme agmonomnozo Al Scheduler (94-96%), sbepicaiouu nesminny egpexmuenicms i npo3opi npoyecu
nputinamms  piuwens y 8cix macwmabax. L{a apximexmypa € 0co0augo egexmusHolo Onsl XMAPHUX
obuucn8anvHux cepedosuuy, pozeopmardv 10T i poznodinenux cucmem, wo sumazaoms cKIaOHO20 PO3NOOLLY
pecypcis, cmeopwuu macumabosane, MoyHe Ma IHMEPNPemosane piuleHHs ONi NIAHYBAHHA, sKe
eexmugHO NOECOHYE NIOKATbHUL WMYYHULL THMeNeKm 13 YEeHMPANi308aHUM NPUUHAMMAM piuleHb O
WUPOKO20 3ACTMOCYBAHHS 8 0ONACMAX, WO NOMPEOYIOmMb OUHAMIYHO20 PO3NOOLTY Pecypci6. y pO3n0oOiIeHUX
cepedosuyax.

Knrouoei cnosa: posnodinene niamy8aHHs 3a60aHb, WMYYHUL [HMeneKm, 2i0pudHa apximexmypd,
Odepesa pitieHb, HelPOHHT Mepedici, 2emepO2eHHi CUCEMU, ONMUMI3AYis pecypcie, XMApPHI 0OUUCTEHHSL.

Introduction

In today’s world, distributed computing systems are becoming increasingly prevalent, with
applications ranging from cloud computing to edge devices. Efficiently scheduling tasks across these
distributed resources is a critical challenge[1]. Traditional scheduling methods often struggle to adapt
to the dynamic nature of these environments[1], leading to suboptimal resource utilization and
performance bottlenecks. This article presents an innovative approach to distributed task scheduling
that leverages the power of artificial intelligence to achieve superior performance and adaptability.

In practice, this multi-tier approach is particularly valuable in scenarios such as cloud
computing, where resource availability can shift rapidly, 10T data processing pipelines that handle
vast and fluctuating data streams, and automation systems requiring timely allocation of tasks across
interconnected machines[2]. By dynamically matching tasks to the most suitable nodes, resource
usage is optimized while keeping latency and overhead in check][2].

Our system introduces a hierarchical architecture that combines the strengths of local
intelligence and centralized decision-making. At the cluster level, we employ Al Schedulers (AIS)
that monitor node status, manage resource allocation, and pre-select suitable nodes based on task
requirements. These AIS components operate independently within their respective clusters,
providing localized optimization and responsiveness to changing conditions. The pre-selected nodes
from each cluster are then passed to a central Decision Tree (DT) layer. The DT evaluates the
suitability of each node based on multiple criteria and makes the final node allocation decision. This
two-tiered approach ensures robust node selection and efficient task execution.

The system is designed to be scalable and adaptive. The distributed nature of the AIS
components allows the system to easily accommodate additional clusters, while the continuous
monitoring of task execution enables dynamic adjustments to changing conditions. This approach
maximizes resource utilization and ensures optimal performance in a multi-cluster environment. The
following sections will delve into the details of the neural network used within the Al Schedulers, the
structure of the Decision Tree, and the overall system architecture. We will also discuss the datasets
used for training and evaluation and present the results of our experiments.

General Approach Overview

The proposed system implements a sophisticated distributed task scheduling architecture across
multiple heterogeneous clusters through six primary stages.

1. Task Submission and Analysis

The system ingests computational tasks and analyzes their requirements, including
computational complexity, resource needs, and execution constraints. This initial assessment forms
the basis for subsequent scheduling decisions.

2. Cluster Distribution

Task specifications are broadcast to all cluster-level Al Schedulers, initiating parallel node
evaluation within each cluster to maximize efficiency and reduce selection time.

3. Al-Based Node Pre-selection

AIS components filter available nodes using current resource availability, performance history,
and load conditions, creating an initial pool of suitable candidates from each cluster.
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4. Cross-Cluster Decision Tree Evaluation

The system aggregates pre-selected nodes into a unified pool, applying multi-criteria decision
tree analysis to determine optimal node selection based on both individual capabilities and cross-
cluster factors.

5. Task Assignment

Selected nodes receive task assignments following validation of resource availability and
execution parameters, ensuring reliable task initiation.

6. Continuous Monitoring

Real-time performance tracking and dynamic adaptation mechanisms maintain optimal
execution conditions throughout the task lifecycle.
This hierarchical approach ensures efficient resource utilization while maintaining system
adaptability and scalability.

Input

Computational Task

Cluq ers

Cluster 1 AIS Cluster 2 AIS Cluster n AIS
Node Selection Node Selection Node Selection

l J
\ Decisjon —
—

Decision Tree

l

Final Node Selection

Exquti on

Task Execution

Fig. 1. Six-stage process of task scheduling in our hybrid Al system. The diagram shows the
progression from initial task submission through Al-based node pre-selection to final task
assignment, highlighting the interaction between cluster-level Al Schedulers (AlS) and the

centralized Decision Tree (DT) layer

Comparative Analysis with Traditional Approaches

The proposed hybrid Al architecture introduces several theoretical advantages over
conventional task distribution algorithms such as Round Robin (RR) and Least Connections (LC)
scheduling. While these traditional approaches offer simplicity and predictable behavior, they lack
the ability to consider multiple parameters simultaneously or adapt to changing conditions[3].

Key Architectural Differences

Decision-Making Complexity

Traditional scheduling approaches exhibit varying levels of computational sophistication. The
Round Robin scheduler follows a simple cyclic distribution pattern, while Least Connections bases
its decisions solely on current connection counts[3]. In contrast, our hybrid Al architecture
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implements a comprehensive evaluation framework that simultaneously considers multiple
operational parameters, including performance metrics, network capabilities, system reliability, and
security requirements.

Adaptability

Environmental changes in distributed systems often necessitate scheduler reconfiguration[3,4].
While traditional approaches require manual intervention to adjust to new conditions, our architecture
implements continuous learning mechanisms and real-time parameter evaluation to automatically
adapt to evolving system states.

Node Selection Intelligence

Conventional scheduling methods rely on simplified decision metrics, potentially overlooking
critical operational parameters. Our hybrid architecture elevates the selection process by combining
neural network pre-selection with decision tree refinement[5], achieving consistent node selection
accuracy rates of 99-100% across diverse operational scenarios.
Future work could include direct performance comparisons with these traditional approaches under
identical workload conditions to measure specific efficiency gains.

Neural Network Architecture for Al-Scheduler
The neural network employed in this study serves as the Al scheduler responsible for predicting
optimal nodes based on input parameters. The architecture is designed to balance complexity and
performance, ensuring accurate predictions while maintaining computational efficiency.

Layers and Components

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer Prediction
(4 features) (32 neurons, RelLU) (16 neurons, ReLU) (1 neuron, Sigmoid) (0-1)

Fig.2. Neural network architecture diagram for the Al Scheduler component. The network consists
of an input layer accepting four normalized node characteristics (performance, data transfer rate,
operational time, and security level), two hidden layers with 32 and 16 neurons respectively using
ReLU activation functions, and an output layer with sigmoid activation producing node suitability
scores. Layer dimensions were determined through empirical testing to balance model complexity
with prediction accuracy

The neural network architecture comprises three primary components: an input layer, two
hidden layers, and an output layer. The input layer accepts four critical parameters that characterize
node capabilities and operational characteristics[6]. These parameters include performance metrics
that quantify computational efficiency, data transfer rates that measure network communication
capabilities, operational time metrics that assess node reliability and availability, and security level
indicators that evaluate the robustness of implemented security measures.

The network’s processing capabilities are enhanced through two hidden layers. The first hidden
layer consists of 32 neurons utilizing Rectified Linear Unit (ReLU) activation functions. This
configuration enables the network to capture non-linear relationships within the input data while
maintaining computational efficiency[6]. The implementation of ReLU activation functions
addresses the vanishing gradient problem commonly encountered in deep neural networks, thereby
facilitating more effective training through improved gradient propagation.

The second hidden layer, comprising 16 neurons with ReLU activation, further refines the
feature representations learned by the first layer. This dimensional reduction approach allows the
network to distill the most relevant features while maintaining the capacity to model complex
relationships between input parameters. The progressive reduction in layer dimensions (from 32 to
16 neurons) follows established principles in neural network architecture design, promoting efficient
information compression while preserving essential feature relationships.

The output layer employs a single neuron with a sigmoid activation function, producing a
probability score within the range from 0 to 1. This probability represents the model’s confidence in
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node suitability for task allocation. The sigmoid activation function is particularly appropriate for this
binary classification task, as it provides a clear probabilistic interpretation of the network’s decision.
The final classification is determined by applying a threshold value (typically 0.5) to this probability
score, effectively partitioning nodes into suitable and unsuitable categories.

Datasets and training

The training and evaluation datasets were generated through simulation of distributed

computing environments using our custom simulation framework. This approach allowed us to model
diverse cluster configurations and node behaviors systematically.
The simulation encompassed three distinct deployment scales, beginning with a small-scale
deployment of 5 clusters containing between 100 nodes each, yielding a total range of 500 nodes. The
medium-scale deployment expanded to 15 clusters, each containing 300 nodes, resulting in 4500 total
nodes. Our large-scale deployment further extended to 30 clusters with a ratio of 500 nodes per
cluster, achieving a comprehensive range of 15000 nodes in total. For each scale, we simulated node
characteristics using our Python-based simulation framework.

The framework generated synthetic performance data for each node, with measurements
collected at regular intervals throughout the simulation period. Each record contained normalized
values (0-100) for the four primary node characteristics (Performance, Data transfer rate, Operational
time, and Security level). The distribution parameters were configured to reflect typical variations
observed in distributed computing environments, with values generated using pseudo-random
number generators with predefined ranges for each parameter.

While simulated data was used for initial development and validation, future work could
incorporate data from real-world cluster deployments to further validate and refine the model's
performance under actual operating conditions.

Parameter Selection Reasoning

In this study, the selection of four key parameters—performance, data transfer rate, operational
time, and security level—was guided by their direct impact on a node’s operational efficiency and
stability. Performance and data transfer rate collectively capture both computational power and
network throughput, which are crucial for time-sensitive distributed workloads[7]. Operational time
highlights system reliability, indicating the likelihood of a node remaining available throughout task
execution. The security level metric ensures compliance with confidentiality and integrity
requirements, especially critical in cloud, 10T, and automation environments where sensitive data
may be processed.

While these parameters capture the majority of operational considerations, integrating
additional metrics is also possible. For example, memory utilization, latency variations, and energy
consumption could further refine the model’s predictive accuracy. However, incorporating more
parameters would require data collection adjustments and careful retraining of both the neural
network and decision tree. By maintaining a focused set of parameters, our approach ensures
computational efficiency and acceptable model complexity, without limiting the possibility of
extending to broader metrics in future implementations.

Decision Tree Layer

The Decision Tree (DT) layer represents a crucial architectural component in our distributed
task scheduling system, serving as the final arbitrator in node allocation decisions[8]. This layer
implements a sophisticated decision-making mechanism based on the scikit-learn
DecisionTreeClassifier, which has been specifically adapted to handle the complexity of distributed
computing environments. The DT layer operates as a secondary filtering mechanism, processing and
refining the preliminary selections made by the distributed Al Schedulers (AIS).

Architecture and Implementation

The decision tree architecture employs a hierarchical structure of binary decisions, where each
internal node represents a conditional test on a specific feature, and each leaf node corresponds to a
final classification decision[8]. Our implementation utilizes an optimized version of the CART
(Classification and Regression Trees) algorithm, which has been enhanced to handle the particular
requirements of distributed task scheduling.
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The feature space for the decision tree encompasses two distinct categories of inputs:
o Primary Node Characteristics:
o  Computing speed (normalized computational capacity)
o Data transfer rate (network bandwidth capabilities)
o  Operational uptime (system reliability metric)
o  Security level (binary security compliance indicator)
. Secondary Features:
o  AIS confidence scores (probabilistic outputs from neural networks)
o Historical performance metrics
Training and Operational Process
The decision tree training process utilizes scikit-learn’s implementation with optimized
hyperparameters for our specific use case. The model is trained on a combination of node performance
metrics and AIS predictions, using a basic k-fold cross-validation approach to prevent overfitting.
During operation, the tree processes node candidates sequentially, evaluating each against learned
decision boundaries. The workflow consists of collecting node parameters (computing speed, data
transfer rate, uptime, and security level), combining these with AIS predictions, and producing binary
classification outputs[8]. This streamlined process ensures efficient node selection while maintaining
the interpretability of decisions through the tree’s hierarchical structure.
Performance analysis and practical experiments
Our empirical analysis demonstrates that the decision tree layer achieves several critical
objectives:

1. Maintains a consistent accuracy rate of 99-100% in node selection decisions
2. Achieves sub-millisecond decision times for individual node evaluations

3. Exhibits linear scaling characteristics with increasing node counts

4. Demonstrates robust performance across varying workload patterns

To validate the effectiveness of our hybrid approach, we conducted extensive experiments
across various cluster configurations[9]. The experimental setup included three different scales of
distributed environments: small-scale (5 clusters), medium-scale (15 clusters), and large-scale (30
clusters) deployments. Within each scale, we tested three different node densities per cluster: 100,
300, and 500 nodes, resulting in total system sizes ranging from 500 to 15000 nodes.

Total Nodes in All Clusters: 500
Accepted Nodes: 11
Rejected Nodes: 489

2025-01-12 23:46:44,171 — _ main__ — INFO - Decision Tree Accuracy: 1.00

Fig.3. Results from the initial experiment with 500-node deployment showing the selected nodes
that met task requirements. The table displays 11 successful node selections (2.2% acceptance rate)
from the total pool of 500 nodes, achieving 100% accuracy in node selection. For each selected
node, the table presents: cluster 1D, node 1D, and the four key parameters (performance, data
transfer rate, operational time, and security level) that influenced the selection decision

197



ISSN 2412-4338  TenexomyHnikamiiini Ta indopmaniiini Texnosorii. 2025. Ne 1 (86)

The experimental results demonstrated remarkable consistency in the system’s accuracy. The
combined AIS-DT approach maintained a high accuracy rate between 99-100% across all
configurations, regardless of the system scale. In contrast, when the AIS was used alone without the
Decision Tree layer, the accuracy fluctuated between 94-96%, indicating that the DT layer provides
crucial refinement of the initial Al Scheduler predictions.

Beyond accuracy metrics, our system provides practical utility by generating a comprehensive
list of eligible nodes for task execution. Each selected node is accompanied by its complete
performance profile, including computing speed, data transfer rate, operational uptime, and security
level. This detailed output enables system administrators to make informed decisions about task
allocation and provides transparency in the selection process. The consistency in accuracy across
different scales, combined with the detailed node selection output, demonstrates that our hybrid
approach successfully addresses the challenges of distributed task scheduling while providing
actionable insights for system operators.

Total Nodes in All Clusters:
Accepted Nodes: 121
Rejected Nodes:
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Decision Tree Accuracy: 1.00

Fig.4. Results from the medium-scale deployment experiment with 15 clusters containing 300
nodes each (4500 total nodes). The table presents detailed performance metrics for nodes that met
the selection criteria, including cluster ID, node 1D, and the four core parameters (performance, data
transfer rate, operational time, and security level). This visualization demonstrates the system's
ability to maintain efficient node selection across a larger deployment scale[10] while preserving
detailed parameter tracking for each selected node
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Future Enhancements

Reinforcement Learning Integration

The integration of reinforcement learning (RL) techniques presents significant opportunities for
enhancing the current architecture[10], particularly in optimizing long-term scheduling decisions[11].
Through continuous interaction with the distributed environment, an RL agent could develop
sophisticated policies for workload prediction and resource allocation. By analyzing historical task
execution patterns, the system would anticipate workload fluctuations and proactively adjust resource
distribution[11]. Furthermore, the RL component could optimize the decision-making process by
dynamically weighing various operational parameters based on their demonstrated impact on task
execution success.

Performance Optimization Opportunities

The current architecture presents several potential ways for performance enhancement. System
response time in distributed task scheduling represents a critical performance metric that could be
improved through architectural optimizations[11]. Implementing parallel processing for decision tree
evaluation, coupled with strategic caching of common decision paths, could potentially reduce
computational overhead[12]. Additionally, leveraging GPU acceleration for neural network
computations might further optimize the decision-making pipeline.

Resource utilization efficiency could be enhanced through the implementation of predictive
workload analysis and dynamic cluster size adjustment[12]. By incorporating advanced load
balancing mechanisms that leverage predictive analytics, the system could achieve more optimal
resource distribution across the network[12]. These improvements would be particularly beneficial
during periods of high variability in workload patterns.

System reliability could be substantially improved through the integration of predictive
maintenance capabilities and automated failover mechanisms. A comprehensive health monitoring
system would enable preemptive identification of potential failures, while automated recovery
procedures would minimize service interruptions[13]. These enhancements, working together, could
potentially yield a significant reduction in system response time while maintaining the current high
accuracy rates in node selection.

Conclusion

This research presents a novel approach to distributed task scheduling through the
implementation of a hybrid artificial intelligence system. The proposed architecture successfully
combines distributed Al Schedulers (AIS) with a centralized Decision Tree (DT) layer, demonstrating
significant advantages over traditional scheduling methods. Our experimental results, conducted
across various scales of deployment (5-30 clusters) and node densities (100-500 nodes per cluster),
validate the effectiveness of this approach.

The system’s key contributions include:

1. A hierarchical scheduling architecture that effectively balances local intelligence with
global optimization

2. An efficient neural network-based node pre-selection mechanism that achieves 94-96%
accuracy independently

3. A sophisticated decision tree layer that refines selections to achieve 99-100% accuracy
consistently

4. A scalable implementation that maintains performance across different system scales (500-
15000 nodes)

5. A transparent decision-making process that provides detailed node selection rationales

Furthermore, our experimental analysis demonstrates that the combination of AIS and DT
components creates a synergistic effect, where the decision tree’s refinement of Al Scheduler
predictions leads to near-perfect accuracy in node selection. The system’s ability to maintain this high
performance across different scales while providing detailed selection criteria and performance
profiles represents a significant advancement in distributed task scheduling.

Future research directions could explore the integration of reinforcement learning techniques for
dynamic optimization and the application of this architecture to other domains requiring sophisticated
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resource allocation. The robust performance and scalability demonstrated in our experiments suggest
that this approach could be effectively adapted to address similar challenges in other distributed
computing contexts.
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